

COSTRUZIONI ESISTENTI

268 Capitolo 8

8.1. OGGETTO

Il presente capitolo stabilisce i criteri generali per la valutazione della sicurezza e per la progettazione, l'esecuzione ed il collaudo degli interventi sulle costruzioni esistenti

Si definisce costruzione esistente quella che abbia, alla data della redazione della valutazione di sicurezza e/o del progetto d'intervento, la struttura completamente realizzata.

8.2. CRITERI GENERALI

Le disposizioni di carattere generale contenute negli altri capitoli della presente norma costituiscono, ove applicabili, riferimento anche per le costruzioni esistenti, ad esclusione di quanto indicato al capitolo 7 in merito a limitazioni di altezza, regole generali, prescrizioni sulla geometria e sui particolari costruttivi e fatto salvo quanto specificato nel seguito.

Nel caso di interventi che non prevedano modifiche strutturali (impiantistici, di distribuzione degli spazi, etc.) il progettista deve valutare la loro possibile interazione con gli SLU ed SLE della struttura o di parte di essa.

La valutazione della sicurezza e la progettazione degli interventi devono tenere conto dei seguenti aspetti della costruzione:

- essa riflette lo stato delle conoscenze al tempo della sua realizzazione;
- in essa possono essere insiti, ma non palesi, difetti di impostazione e di realizzazione;
- essa può essere stata soggetta ad azioni, anche eccezionali, i cui effetti non siano completamente manifesti;
- le sue strutture possono presentare degrado e/o modifiche significative, rispetto alla situazione originaria.

Nella definizione dei modelli strutturali si dovrà considerare che sono conoscibili, con un livello di approfondimento che dipende dalla documentazione disponibile e dalla qualità ed estensione delle indagini che vengono svolte, le seguenti caratteristiche:

- la geometria e i particolari costruttivi;
- le proprietà meccaniche dei materiali e dei terreni;
- i carichi permanenti.

Si dovrà prevedere l'impiego di metodi di analisi e di verifica dipendenti dalla completezza e dall'affidabilità dell'informazione disponibile e l'uso di coefficienti legati ai "fattori di confidenza" che, nelle verifiche di sicurezza, modifichino i parametri di capacità in funzione del livello di conoscenza (v. §8.5.4) delle caratteristiche sopra elencate

8.3. VALUTAZIONE DELLA SICUREZZA

La valutazione della sicurezza di una struttura esistente è un procedimento quantitativo, volto a determinare l'entità delle azioni che la struttura è in grado di sostenere con il livello di sicurezza minimo richiesto dalla presente normativa. L'incremento del livello di sicurezza si persegue, essenzialmente, operando sulla concezione strutturale globale con interventi, anche locali.

La valutazione della sicurezza, argomentata con apposita relazione, deve permettere di stabilire se:

- l'uso della costruzione possa continuare senza interventi;
- l'uso debba essere modificato (declassamento, cambio di destinazione e/o imposizione di limitazioni e/o cautele nell'uso);
- sia necessario aumentare la sicurezza strutturale, mediante interventi.

La valutazione della sicurezza deve effettuarsi quando ricorra anche una sola delle seguenti situazioni:

- riduzione evidente della capacità resistente e/o deformativa della struttura o di alcune sue parti dovuta a: significativo degrado e
 decadimento delle caratteristiche meccaniche dei materiali, deformazioni significative conseguenti anche a problemi in fondazione; danneggiamenti prodotti da azioni ambientali (sisma, vento, neve e temperatura), da azioni eccezionali (urti, incendi,
 esplosioni) o da situazioni di funzionamento ed uso anomali;
- provati gravi errori di progetto o di costruzione;
- cambio della destinazione d'uso della costruzione o di parti di essa, con variazione significativa dei carichi variabili e/o passaggio ad una classe d'uso superiore;
- esecuzione di interventi non dichiaratamente strutturali, qualora essi interagiscano, anche solo in parte, con elementi aventi funzione strutturale e, in modo consistente, ne riducano la capacità e/o ne modifichino la rigidezza;
- ogni qualvolta si eseguano gli interventi strutturali di cui al § 8.4.

Qualora le circostanze di cui ai punti precedenti riguardino porzioni limitate della costruzione, la valutazione della sicurezza potrà essere effettuata anche solo sugli elementi interessati e a quelli con essi interagenti, tenendo presente la loro funzione nel complesso strutturale, posto che le mutate condizioni locali non incidano sostanzialmente sul comportamento globale della struttura.

Nella valutazione della sicurezza, da deve inoltre effettuarsi ogni qual volta si eseguano interventi strutturali di miglioramento o adeguamento di cui al § 8.4, ; in particolare il progettista dovrà esplicitare in un'apposita relazione, esprimendoli in termini di rapporto fra capacità e domanda, i livelli di sicurezza precedenti all'intervento e quelli raggiunti con esso.

Costruzioni esistenti 269

Qualora sia necessario effettuare la valutazione della sicurezza della costruzione, la verifica del sistema di fondazione deve essere eseguita solo se sussistono condizioni che possano dare luogo a fenomeni di instabilità globale o se si verifica una delle seguenti condizioni:

- nella costruzione siano presenti importanti dissesti attribuibili a cedimenti delle fondazioni o dissesti della stessa natura si sono prodotti nel passato;
- siano possibili fenomeni di ribaltamento e/o scorrimento della costruzione per effetto: di condizioni morfologiche sfavorevoli, di modificazioni apportate al profilo del terreno in prossimità delle fondazioni, delle azioni sismiche di progetto;
- siano possibili fenomeni di liquefazione del terreno di fondazione dovuti alle azioni sismiche di progetto.

Allo scopo di verificare la sussistenza delle predette condizioni, si farà riferimento alla documentazione disponibile e si potrà omettere di svolgere indagini specifiche solo qualora, a giudizio esplicitamente motivato del professionista incaricato, sul volume di terreno significativo e sulle fondazioni sussistano elementi di conoscenza sufficienti per effettuare le valutazioni precedenti.

La valutazione della sicurezza e la progettazione degli interventi sulle costruzioni esistenti potranno essere eseguite con riferimento ai soli SLU, salvo che per le costruzioni in classe d'uso IV, per le quali sono richieste anche le verifiche agli SLE specificate al § 7.3.6; in quest'ultimo caso potranno essere adottati livelli prestazionali ridotti.

Per la combinazione sismica le verifiche agli SLU possono essere eseguite rispetto alla condizione di salvaguardia della vita umana (SLV) o, in alternativa, alla condizione di collasso (SLC), secondo quanto specificato al § 7.3.6

Nelle verifiche rispetto alle azioni sismiche il livello di sicurezza della costruzione è quantificato attraverso il rapporto ζ_E tra l'azione sismica massima sopportabile dalla struttura e l'azione sismica massima che si utilizzerebbe nel progetto di una nuova costruzione; l'entità delle altre azioni contemporaneamente presenti è la stessa assunta per le nuove costruzioni, salvo quanto emerso sui carichi verticali permanenti a seguito delle indagini condotte (di cui al § 8.5.5) e salvo l'eventuale adozione di appositi provvedimenti restrittivi sull'uso e, conseguentemente, sui carichi verticali variabili.

La restrizione sull'uso può mutare da porzione a porzione della costruzione e, per l'i-esima porzione, è quantificata attraverso il rapporto $\zeta_{v,i}$ tra il valore massimo del sovraccarico variabile verticale sopportabile da quella parte della costruzione e il valore del sovraccarico verticale variabile che si utilizzerebbe nel progetto di una nuova costruzione.

8.4. CLASSIFICAZIONE DEGLI INTERVENTI

Si individuano le seguenti categorie di intervento:

- *interventi di riparazione o locali*: interventi che interessino singoli elementi strutturali e che, comunque, non riducano le condizioni di sicurezza preesistenti;
- *interventi di miglioramento:* interventi atti ad aumentare la sicurezza strutturale preesistente, senza necessariamente raggiungere i livelli di sicurezza fissati al § 8.4.3;
- *interventi di adeguamento*: interventi atti ad aumentare la sicurezza strutturale preesistente, conseguendo i livelli di sicurezza fissati al paragrafo 8.4.3.

Solo gli interventi di miglioramento ed adeguamento sono sottoposti a collaudo statico.

Per gli interventi di miglioramento e di adeguamento l'esclusione di provvedimenti in fondazione dovrà essere in tutti i casi motivata esplicitamente dal progettista, attraverso una verifica di idoneità del sistema di fondazione in base ai criteri indicati nel §8.3.

Qualora l'intervento preveda l'inserimento di nuovi elementi che richiedano apposite fondazioni, queste ultime dovranno essere verificate con i criteri generali di cui ai precedenti Capitoli 6 e 7, così come richiesto per le nuove costruzioni.

Per i beni di interesse culturale ricadenti in zone dichiarate a rischio sismico, ai sensi del comma 4 dell'art. 29 del DLgs 22 gennaio 2004, n. 42 "Codice dei beni culturali e del paesaggio", è in ogni caso possibile limitarsi ad interventi di miglioramento effettuando la relativa valutazione della sicurezza.

8.4.1. RIPARAZIONE O INTERVENTO LOCALE

Gli interventi di questo tipo riguarderanno singole parti e/o elementi della struttura. Essi non debbono cambiare significativamente il comportamento globale della costruzione e sono volti a conseguire una o più delle seguenti finalità:

- ripristinare, rispetto alla configurazione precedente al danno, le caratteristiche iniziali di elementi o parti danneggiate;
- migliorare le caratteristiche di resistenza e/o di duttilità di elementi o parti, anche non danneggiati;
- impedire meccanismi di collasso locale;
- modificare un elemento o una porzione limitata della struttura;

Il progetto e la valutazione della sicurezza potranno essere riferiti alle sole parti e/o elementi interessati, documentando le carenze strutturali riscontrate e dimostrando che, rispetto alla configurazione precedente al danno, al degrado o alla variante, non vengano prodotte sostanziali modifiche al comportamento delle altre parti e della struttura nel suo insieme e che gli interventi non comportino una riduzione dei livelli di sicurezza preesistenti.

La relazione di cui al § 8.3 che, in questi casi, potrà essere limitata alle sole parti interessate dall'intervento e a quelle con esse interagenti, dovrà documentare le carenze strutturali riscontrate, risolte e/o persistenti, ed indicare le eventuali conseguenti limitazioni all'uso della costruzione.

270 Capitolo 8

Nel caso di interventi di rafforzamento locale, volti a migliorare le caratteristiche meccaniche di elementi strutturali o a limitare la possibilità di meccanismi di collasso locale, è necessario valutare l'incremento del livello di sicurezza locale.

8.4.2. INTERVENTO DI MIGLIORAMENTO

Rientrano negli interventi di miglioramento tutti gli interventi che siano comunque finalizzati ad accrescere il livello di sicurezza della costruzione.

La valutazione della sicurezza e il progetto di intervento dovranno essere estesi a tutte le parti della struttura potenzialmente interessate da modifiche di comportamento, nonché alla struttura nel suo insieme.

Per la combinazione sismica delle azioni, il valore di ζ_E può essere minore dell'unità. A meno di specifiche situazioni relative ai beni culturali, per le costruzioni di classe IV il valore di ζ_E , a seguito degli interventi di miglioramento, deve essere comunque non minore di 0,4. mentre per le costruzioni di classe III e II il valore di ζ_E , sempre a seguito degli interventi di miglioramento, deve essere comunque non minore di 0,1.

Nel caso di interventi che prevedano l'impiego di sistemi di isolamento, per la verifica del sistema di isolamento, si deve avere almeno $\zeta_E = 1,0$.

8.4.3. INTERVENTO DI ADEGUAMENTO

L'intervento di adeguamento della costruzione è obbligatorio quando si intenda:

- a) sopraelevare la costruzione;
- b) ampliare la costruzione mediante opere ad essa strutturalmente connesse e tali da alterarne significativamente la risposta;
- c) apportare variazioni di classe e/o di destinazione d'uso che comportino incrementi dei carichi globali verticali in fondazione superiori al 10%, valutati secondo la combinazione caratteristica per carichi gravitazionali di cui alla Equazione 2.5.2 includendo i soli carichi gravitazionali. superiori al 10%. Resta comunque fermo l'obbligo di procedere alla verifica locale delle singole parti e/o elementi della struttura, anche se interessano porzioni limitate della costruzione;
- d) effettuare interventi strutturali volti a trasformare la costruzione mediante un insieme sistematico di opere che portino ad un sistema strutturale diverso dal precedente; nel caso degli edifici, effettuare interventi strutturali che trasformano il sistema strutturale mediante l'impiego di nuovi elementi verticali portanti su cui grava almeno il 50% dei carichi gravitazionali complessivi riferiti ai singoli piani.

In ogni caso, il progetto dovrà essere riferito all'intera costruzione e dovrà riportare le verifiche dell'intera struttura post-intervento, secondo le indicazioni del presente capitolo.

Il valore di ζε che deve essere raggiunto post operam dipende da quale sia la condizione sopra indicata che impone l'obbligo dell'adeguamento e dal livello di conoscenza che si vuole/può conseguire con le indagini.

Nei casi a), b) e d), per la verifica della struttura, si deve avere almeno ζε ≥ 1,0. Nel caso c) si può assumere ζε≥ 0,80 .

Una variazione dell'altezza dell'edificio dovuta alla realizzazione di cordoli sommitali o a variazioni della copertura che non comportino incrementi di superficie abitabile, non è considerato ampliamento, ai sensi della condizione *a*). In tal caso non è necessario procedere all'adeguamento, salvo che non ricorrano una o più delle condizioni di cui agli altri precedenti punti.

8.5. DEFINIZIONE DEL MODELLO DI RIFERIMENTO PER LE ANALISI

Nelle costruzioni esistenti le situazioni concretamente riscontrabili sono le più diverse ed è quindi impossibile prevedere regole specifiche per tutti i casi. Di conseguenza, il modello per la valutazione della sicurezza dovrà essere definito e giustificato dal progettista, caso per caso, in relazione al comportamento strutturale atteso, tenendo conto delle indicazioni generali di seguito esposte.

8.5.1. ANALISI STORICO-CRITICA

Ai fini di una corretta individuazione del sistema strutturale e del suo stato di sollecitazione è importante ricostruire il processo di realizzazione e le successive modificazioni subite nel tempo dalla costruzione, nonché gli eventi che la hanno interessata.

8.5.2. RILIEVO

Il rilievo geometrico-strutturale dovrà essere riferito alla geometria complessiva, sia della costruzione, sia degli elementi costruttivi, comprendendo i rapporti con le eventuali strutture in aderenza. Nel rilievo dovranno essere rappresentate le modificazioni intervenute nel tempo, come desunte dall'analisi storico-critica.

Il rilievo deve individuare l'organismo resistente della costruzione, tenendo anche presenti la qualità e lo stato di conservazione dei materiali e degli elementi costitutivi.

Dovranno altresì essere rilevati i dissesti, in atto o stabilizzati, ponendo particolare attenzione all'individuazione dei quadri fessurativi e dei meccanismi di danno.

8.5.3. CARATTERIZZAZIONE MECCANICA DEI MATERIALI

Costruzioni esistenti 271

Per conseguire un'adeguata conoscenza delle caratteristiche dei materiali e del loro degrado, ci si baserà sulla documentazione già disponibile, su verifiche visive in *situ* e su indagini sperimentali. Le indagini dovranno essere motivate, per tipo e quantità, dal loro effettivo uso nelle verifiche; nel caso di costruzioni sottoposte a tutela, ai sensi del D.Lgs. 42/2004, di beni di interesse storico-artistico o storico-documentale o inseriti in aggregati storici e nel recupero di centri storici o di insediamenti storici , dovrà esserne considerato l'impatto in termini di conservazione. I valori di progetto delle resistenze meccaniche dei materiali verranno valutati sulla base delle indagini e delle prove effettuate sulla struttura, tenendo motivatamente conto dell'entità delle dispersioni, prescindendo dalle classi discretizzate previste nelle norme per le nuove costruzioni. Per le prove di cui alla Circolare 08 settembre 2010, n. 7617/STC, il prelievo dei campioni dalla struttura e l'esecuzione delle prove stesse devono essere effettuate a cura di un laboratorio di cui all'articolo 59 del DPR 380/2001.

8.5.4. LIVELLI DI CONOSCENZA E FATTORI DI CONFIDENZA

Sulla base degli approfondimenti effettuati nelle fasi conoscitive sopra riportate, saranno individuati i "livelli di conoscenza" dei diversi parametri coinvolti nel modello e definiti i correlati fattori di confidenza, da utilizzare nelle verifiche di sicurezza.

Ai fini della scelta del tipo di analisi e dei valori dei fattori di confidenza si distinguono i tre livelli di conoscenza seguenti, ordinati per informazione crescente:

- LC1;
- LC2;
- LC3.

Gli aspetti che definiscono i livelli di conoscenza sono: geometria della struttura, dettagli costruttivi, proprietà dei materiali, connessioni tra i diversi elementi e loro presumibili modalità di collasso.

In particolare il livello LC3 si intende raggiunto quando si disponga di: rilievo geometrico e strutturale, quadro dei dissesti, documenti progettuali opportunamente verificati nella loro completezza e rispondenza al reale, verifiche in situ sui dettagli costruttivi, sulle proprietà dei materiali, sulle connessioni tra i diversi elementi.

Specifica attenzione dovrà essere posta alla completa individuazione dei potenziali meccanismi di collasso locali e globali, duttili e fragili.

8.5.5. AZIONI

I valori delle azioni e le loro combinazioni da considerare nel calcolo, sia per la valutazione della sicurezza sia per il progetto degli interventi, sono quelle definite dalla presente norma per le nuove costruzioni, salvo quanto precisato nel presente capitolo.

Per i carichi permanenti, un accurato rilievo geometrico-strutturale e dei materiali potrà consentire di adottare coefficienti parziali modificati, assegnando a γ_G valori esplicitamente motivati. I valori di progetto delle altre azioni saranno quelli previsti dalla presente norma.

8.6. MATERIALI

Gli interventi sulle strutture esistenti devono essere effettuati con i materiali previsti dalle presenti norme; possono altresì essere utilizzati materiali non tradizionali, purché nel rispetto di normative e documenti di comprovata validità, ovvero quelli elencati al Capitolo 12.

Nel caso di edifici in muratura è possibile effettuare riparazioni locali o integrazioni con materiale analogo a quello impiegato originariamente nella costruzione, purché durevole e di idonee caratteristiche meccaniche.

8.7. PROGETTAZIONE DEGLI INTERVENTI IN PRESENZA DI AZIONI SISMICHE

Nella progettazione di interventi sulle costruzioni esistenti, specie se soggette ad azioni sismiche, particolare attenzione sarà posta agli aspetti che riguardano la duttilità. Si dovranno quindi assumere le informazioni necessarie a valutare se i dettagli costruttivi, i materiali utilizzati e i meccanismi resistenti siano in grado di sostenere cicli di sollecitazione o deformazione anche in campo anelastico.

8.7.1. COSTRUZIONI IN MURATURA

Nelle costruzioni esistenti in muratura, in particolare negli edifici, si possono manifestare meccanismi, sia locali, sia globali. I meccanismi locali interessano singoli pannelli murari o più ampie porzioni della costruzione e impegnano i pannelli murari prevalentemente fuori del loro piano medio; essi sono favoriti dall'assenza o scarsa efficacia dei collegamenti, sia tra pareti e orizzontamenti, sia negli incroci tra pareti. I meccanismi globali sono quelli che interessano l'intera costruzione e impegnano i pannelli murari prevalentemente nel loro piano medio.

La sicurezza della costruzione deve essere valutata nei confronti di entrambi i tipi di meccanismo.

272 CAPITOLO 8

Per l'analisi sismica dei meccanismi locali si può far ricorso ai metodi dell'analisi limite, tenendo conto, anche se in forma approssimata, della resistenza a compressione della muratura, della tessitura muraria, della qualità della connessione tra pareti murarie e tra pareti e orizzontamenti, della presenza di catene e tiranti. Con tali metodi è possibile valutare la capacità sismica in termini sia di resistenza (applicando un opportuno fattore di comportamento), sia di spostamento (determinando l'andamento dell'azione orizzontale che la struttura è progressivamente in grado di sopportare all'evolversi del meccanismo).

L'analisi sismica globale deve considerare, per quanto possibile, il sistema strutturale reale, con particolare attenzione alla rigidezza e resistenza degli orizzontamenti, e all'efficacia dei collegamenti degli elementi strutturali con gli orizzontamenti e tra loro. Nel caso di muratura irregolare, la resistenza a taglio di progetto di un pannello in muratura, per azioni nel suo piano medio, potrà essere calcolata facendo ricorso a formulazioni, alternative rispetto a quelle adottate per opere nuove, purché di comprovata validità.

In presenza di edifici in aggregato, contigui, a contatto od interconnessi con edifici adiacenti, i metodi di verifica di uso generale per gli edifici di nuova costruzione possono risultare inadeguati. Nell'analisi di un edificio facente parte di un aggregato edilizio, infatti, occorre tenere conto delle possibili interazioni derivanti dalla contiguità strutturale con gli edifici adiacenti. A tal fine dovrà essere individuata l'unità strutturale (US) oggetto di studio, evidenziando le azioni che su di essa possono derivare dalle unità strutturali contigue.

L'US dovrà avere continuità da cielo a terra, per quanto riguarda il flusso dei carichi verticali e, di norma, sarà delimitata o da spazi aperti, o da giunti strutturali, o da edifici contigui strutturalmente ma, almeno tipologicamente, diversi. Oltre a quanto normalmente previsto per gli edifici non disposti in aggregato, per gli edifici in aggregato dovranno essere valutati gli effetti di: spinte non contrastate sulle pareti in comune con le US adiacenti, causate da orizzontamenti sfalsati di quota, meccanismi locali derivanti da prospetti non allineati, sia verticalmente sia orizzontalmente, US adiacenti di differente altezza.

L'analisi globale di una singola unità strutturale assume spesso un significato convenzionale e perciò può utilizzare metodologie semplificate. La verifica di una US dotata di orizzontamenti sufficientemente rigidi nel proprio piano può essere svolta, anche per edifici con più di due orizzontamenti, mediante l'analisi statica non lineare, con verifica in termini sia di forze sia di spostamenti, analizzando e verificando separatamente ciascun interpiano dell'edificio, e trascurando la variazione della forza assiale nei maschi murari dovuta all'effetto dell'azione sismica. Con l'esclusione di US d'angolo o di testata, così come di parti di edificio non vincolate o non aderenti su alcun lato ad altre unità strutturali, l'analisi potrà anche essere svolta trascurando gli effetti torsionali, nell'ipotesi che gli orizzontamenti possano unicamente traslare nella direzione dell'azione sismica considerata. Nel caso invece di US d'angolo o di testata è comunque ammesso il ricorso ad analisi semplificate, purché si tenga conto di possibili effetti torsionali e dell'azione aggiuntiva trasferita dalle US adiacenti applicando opportuni coefficienti maggiorativi delle azioni orizzontali.

Qualora gli orizzontamenti dell'edificio non siano sufficientemente rigidi nel proprio piano si potrà procedere all'analisi delle singole pareti o dei sistemi di pareti complanari, ciascuna parete essendo soggetta ai carichi verticali di competenza ed alle corrispondenti azioni del sisma nella direzione parallela alla parete.

8.7.2. COSTRUZIONI IN CALCESTRUZZO ARMATO O IN ACCIAIO

Nelle costruzioni esistenti in calcestruzzo armato o in acciaio soggette ad azioni sismiche viene attivata la capacità di elementi e meccanismi resistenti, che possono essere "duttili" o "fragili".

L'analisi sismica globale deve utilizzare, per quanto possibile, metodi di analisi che consentano di valutare in maniera appropriata sia la resistenza sia la duttilità disponibili. L'impiego di metodi di calcolo lineari richiede al progettista un'opportuna definizione del fattore di comportamento in relazione alle caratteristiche meccaniche, globali e locali, della struttura in esame.

I meccanismi "duttili" si verificano controllando che la domanda non superi la corrispondente capacità in termini di deformazione o di resistenza in relazione al metodo utilizzato; i meccanismi "fragili" si verificano controllando che la domanda non superi la corrispondente capacità in termini di resistenza.

Per il calcolo della capacità di elementi/meccanismi duttili si impiegano le proprietà dei materiali esistenti, determinate secondo le modalità indicate al § 8.5.3, divise per i fattori di confidenza corrispondenti al livello di conoscenza raggiunto.

Per il calcolo della capacità di elementi/meccanismi fragili, le resistenze dei materiali si dividono per i corrispondenti coefficienti parziali e per i fattori di confidenza corrispondenti al livello di conoscenza raggiunto.

Per i materiali nuovi o aggiunti si impiegano le proprietà di calcolo come per le nuove costruzioni nominali.

Nel caso di demolizioni o interventi su organismi in c.a. facenti parte di aggregati edilizi è fatto obbligo al progettista di operare indagini e/o verifiche atte ad accertare, preliminarmente, l'assenza di interazioni con i corpi adiacenti, al fine di poter escludere il prodursi, su di essi, di modifiche in senso negativo del comportamento strutturale a seguito delle demolizioni o degli interventi.

8.7.3. COSTRUZIONI MISTE

Alcune tipologie di costruzioni esistenti possono essere classificate come miste. Situazioni ricorrenti sono:

- costruzioni le cui pareti perimetrali siano in muratura portante e la cui struttura verticale interna sia rappresentata da pilastri (per esempio in c.a. o acciaio);
- costruzioni in muratura su cui gravino sopraelevazioni aventi sistema strutturale, per esempio, in c.a. o acciaio, o edifici in c.a.
 o acciaio su cui gravino sopraelevazioni in muratura;

Costruzioni esistenti 273

costruzioni in muratura che abbiano subito ampliamenti planimetrici, il cui sistema strutturale (per esempio, in c.a. o acciaio)
 sia interconnesso con quello preesistente in muratura.

Per queste situazioni è necessario prevedere modellazioni che tengano in considerazione le particolarità strutturali identificate e l'interazione tra elementi strutturali diversi per materiale e rigidezza, ricorrendo, ove necessario, a metodi di analisi non lineare di comprovata validità.

8.7.4. CRITERI E TIPI D'INTERVENTO

Per tutte le tipologie di costruzioni esistenti gli interventi vanno progettati ed eseguiti, per quanto possibile, in modo regolare ed uniforme. L'esecuzione di interventi su porzioni limitate dell'edificio va opportunamente valutata e giustificata, considerando la variazione nella distribuzione delle rigidezze e delle resistenze e la conseguente eventuale interazione con le parti restanti della struttura. Particolare attenzione deve essere posta alla fase esecutiva degli interventi, in quanto una cattiva esecuzione può peggiorare il comportamento globale della costruzione.

La scelta del tipo, della tecnica, dell'entità e dell'urgenza dell'intervento dipende dai risultati della precedente fase di valutazione, dovendo mirare prioritariamente a contrastare lo sviluppo di meccanismi locali e/o di meccanismi fragili e, quindi, a migliorare il comportamento globale della costruzione.

In generale dovranno essere valutati e curati gli aspetti seguenti:

- riparazione di eventuali danni presenti;
- riduzione delle carenze dovute ad errori grossolani;
- miglioramento della capacità deformativa ("duttilità") di singoli elementi;
- riduzione delle condizioni, anche legate alla presenza di elementi non strutturali, che determinano situazioni di forte irregolarità, sia planimetrica sia altimetrica, degli edifici, in termini di massa, resistenza e/o rigidezza,;
- riduzione delle masse, anche mediante demolizione parziale o variazione di destinazione d'uso;
- riduzione dell'impegno degli elementi strutturali originari mediante l'introduzione di sistemi d'isolamento o di dissipazione di energia;
- riduzione dell'eccessiva deformabilità degli orizzontamenti, sia nel loro piano che ortogonalmente ad esso;;
- miglioramento dei collegamenti degli elementi non strutturali, alla struttura e tra loro;
- incremento della resistenza degli elementi verticali resistenti, tenendo eventualmente conto di una possibile riduzione della duttilità globale per effetto di rinforzi locali;
- realizzazione, ampliamento, eliminazione di giunti sismici o interposizione di materiali atti ad attenuare gli eventuali urti;
- miglioramento del sistema di fondazione, ove necessario.

Interventi su parti non strutturali ed impianti sono necessari quando, in aggiunta a motivi di funzionalità, la loro risposta sismica possa mettere a rischio la vita degli occupanti o produrre danni ai beni contenuti nella costruzione. Per il progetto di interventi atti ad assicurare l'integrità di tali parti valgono le prescrizioni fornite nei §§ 7.2.3 e 7.2.4.

Per le strutture in muratura, inoltre, dovranno essere valutati e curati gli aspetti seguenti:

- miglioramento dei collegamenti tra orizzontamenti e pareti, tra copertura e pareti, tra pareti confluenti in martelli murari o angolate;
- riduzione ed eliminazione delle spinte non contrastate di coperture, archi e volte;
- rafforzamento delle pareti intorno alle aperture,

Per le strutture in c.a. ed in acciaio si prenderanno in considerazione, valutandone l'eventuale necessità e l'efficacia, anche le tipologie di intervento di seguito esposte o loro combinazioni:

- rinforzo di tutti o parte degli elementi;
- aggiunta di nuovi elementi resistenti, quali pareti in c.a., controventi in acciaio, etc.;
- eliminazione di eventuali meccanismi "di piano";
- introduzione di un sistema strutturale aggiuntivo in grado di resistere per intero all'azione sismica di progetto;
- eventuale trasformazione di elementi non strutturali in elementi strutturali, come nel caso di incamiciatura in c.a. di pareti in laterizio.

Infine, per le strutture in acciaio, potranno essere valutati e curati gli aspetti seguenti:

- miglioramento della stabilità degli elementi e della struttura;
- incremento della resistenza e/o della rigidezza dei collegamenti;
- miglioramento dei dettagli costruttivi nelle zone dissipative;
- introduzione di indebolimenti locali controllati, finalizzati ad un miglioramento del meccanismo di collasso.

8.7.5. ELABORATI DEL PROGETTO DELL'INTERVENTO

Per tutte le tipologie costruttive, il progetto dell'intervento di miglioramento o adeguamento sismico deve almeno comprendere:

- a) l'analisi e la verifica della struttura prima dell'intervento, con identificazione delle carenze e del livello di azione sismica per la quale viene raggiunto lo SLU (e SLE se richiesto);
- b) la scelta, esplicitamente motivata, del tipo di intervento;
- c) la scelta, esplicitamente motivata, delle tecniche e/o dei materiali;

274 CAPITOLO 8

- d) il dimensionamento preliminare dei rinforzi e degli eventuali elementi strutturali aggiuntivi;
- e) l'analisi strutturale della struttura post-intervento;
- f) la verifica della struttura post-intervento, con determinazione del livello di azione sismica per la quale viene raggiunto lo SLU (e SLE se richiesto).

Analogamente si procederà per gli interventi (di riparazione o rafforzamento) locali. In tal caso non si eseguiranno le analisi della struttura e le verifiche ante e post-operam di cui ai punti a), e), f), che saranno sostituite da analoghe verifiche sul singolo elemento o sul meccanismo locale sul quale si interviene, al fine di determinarne gli incrementi di resistenza e/o di duttilità conseguenti all'intervento.